Course Syllabus for MCHE 201 – Introduction to Engineering Design

MCHE 201: Introduction to Engineering Design

3 credit hours; two 50-minute lecture sessions and two 50-minute lab sessions/week

Joshua Vaughan, Associate Professor, Department of Mechanical Engineering and Carla Hodge, Instructor, Department of Mechanical Engineering

Introductory Mechanical Design Tools, William Singhose and Jeff Donnell, ISBN: 9780984221042

a. brief description of the content of the course (catalog description)

Techniques for creating, evaluating, synthesizing, implementing, and documenting solutions to open ended engineering problems, team and project management.

b. prerequisites or co-requisites

<u>Prerequisite:</u> MCHE 101, Introduction to Mechanical Engineering and ENGR 211, Statics <u>Pre/ Co-requisite:</u> N/A

c. indicate whether a required, elective, or selected elective course

Required for Mechanical Engineering.

Specific goals for the course	a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic.			
	By the end of the course, the student will be to:	SOs		
	Complete an objective design process through the Conceptual Design phase	1, 2, 3, 5, 7		
	Generate a comprehensive listing of customer requirements using the House of Quality	1, 2		
	Distill engineering specification from customer requirements and formulate them in a Specification Sheet	1, 2, 7		
	Develop the functional requirements of a design (Function Tree)	1, 2		

Develop alternative concepts and objectively evaluate them using Evaluation Matrices	1, 2
Effectively communicate the design process through both written and oral technical documentation	1, 2, 3, 5
Develop and manage project timelines using tools like the Gantt Chart	5
Work within a team framework and effectively divide tasks among the team	5
Write and execute basic code on embedded systems	1, 2, 7
Interface with and process data from a variety of basic analog and digital sensors	1, 2, 7
Control basic actuators (brushed DC motors, stepper motors, servomotors, and linear actuators)	1, 2, 7

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

1	2	3	4	5	6	7
М	Н	Н	L	Н	L	Н

H-Strongly Supported, M-Supported, L-Minimal Support.